
Real-time Speaker Adapted Speech to Speech
Translation System in Mobile Environment

Yong Guan1,2, Lin Zheng2 ,Jilei Tian2

School of Information and Communication Engineering, Beijing University of Post and Telecommunication, Beijing, China
Nokia Research Center, Beijing, China

{Ext-yong.guan, ext-zheng.lin, Jilei.tian}@nokia.com

Abstract—In this paper, a real-time speech to speech translation
(S2ST) system in mobile environment is designed and
implemented as a client-server architecture. Particularly, we
apply cross lingual speaker adaptation to adapt synthesized
speech to enrolling speaker to ensure personalization. This real-
time S2ST system provides streaming way, multi-threading and
speaker adapted speech to speech translation for mobile user. It
makes it available that mobile users get personalized real-time
S2ST service through 3G/WIFI network in mobile environment.

Keywords - speech to speech translation; speaker adaptation;
cross lingual speaker adaptation; AMR coding; mobile application

I. INTRODUCTION

Generally speaking, there are two kinds of Speech to Speech
Translation (S2ST) systems, of which, one is embedded system
or application into a hand-held device (such as a mobile
phone)[1], and another is client-server system which makes the
S2S translation services available to those hand-held devices
connected via a 3G mobile phone networks[2]. The client-
server system makes it available that we put more resources
and more powerful application in the server end and a slim
application in mobile client. And also, it is possible that we
make S2ST system work like a service in the client-server
mode. Moreover, nowadays, the 3G and WIFI network make
transmission delay acceptable for client-server mode.

In this paper, we develop the real-time S2ST system in a
client-server mode, in which the enabling components,
including ASR (Automatic Speech Recognition), MT (Machine
Translation) and TTS (Text to Speech), are implemented on the
server. The client end software is mainly responsible for the
user interface and interaction as well as some audio pre-
processing. The real-time S2ST system includes ASR, MT and
TTS online modules and we train the speaker adaptation for
ASR and cross-lingual speaker adaptation for TTS as an off-
line task to ensure real-time performance. With the main
computation being performed by the server, the client will be a
stand-alone application running on the mobile device. An
utterance from one speaker is recorded from the mobile client
and then transmitted to the server. After generating translated
and synthesized voice in the server, synthesized speech is
transmitted to the mobile device of another speaker.

Personalization is necessary for natural interaction and to
make the device less obtrusive, in what is essentially a human-
human interaction. With cross lingual speaker adaptation, a

user’s spoken input in one language is used to produce spoken
output in another language, while continuing to sound like the
user’s voice. In this S2ST system, we use the streaming
mechanism to make it work with real time, use the multi-
threading mechanism to make it work as a service, and use the
speaker adapted algorithm to make it personalized so that we
get a real-time speaker adapted S2ST translation service system
running in client-server mode and mobile environment.

The remainder of this paper is organized as follows: first,
we briefly overview the real time S2ST system, including
architecture design, network communication protocol and data
handling. Next, a detailed description is given for the server
engine and experimental analysis, including the primary
components: ASR, MT and TTS. This is followed by the user
interaction design in the client end. Finally, we conclude this
report and discuss the future directions.

II. OVERVIEW OF THE REAL-TIME S2ST SYSTEM

In order to develop a mobile cross-lingual S2ST system, we
need to provide an infrastructure that is able to flexibly
integrate the selected components. Basically, we design a
framework that can be used to easily and flexibly test and
evaluate different components that have been developed for the
real-time S2ST system. More precisely, we design an
infrastructure based on client-server architecture consisting of
clients that can run on the Symbian mobile devices. The server
runs Linux OS (Ubuntu system with internet support).

A. Network settings
The real-time S2ST system is intended to run on realistic

scenarios that can integrate and evaluate different ASR, MT
and TTS algorithms. Once the client software has been
installed on smart phones, each client is allocated an IP address
by the DHCP server in the network. The client sends/receives
IP packets to/from the server running on Linux OS. The client
can use 3G or Wi-Fi to connect to internet and communication
between two clients is similar to voice over IP (VoIP).

B. Architecture
 The client/server architecture is selected for building the

system. Three types of data are transmitted between the mobile
client and Linux server, including control messages, audio
signal, and text. TCP protocol is adopted for control messages,
texts and audio to ensure the quality of transmission.

ICSP2010 Proceedings

577

978-1-4244-5899-8/10/$26.00 ©2010 IEEE

At the client end, the audio engine is used to play back
audio where audio send/receive module is in charge of audio
and text transmission. The control module processes the
interaction between client and server.

At the server end, control module processes the interaction
between client and server and maintains the session between
two mobile clients. The internal core engine is executing the
kernel task of speech-to-speech translation, including cross-
lingual and unified speaker adaptation.

C. Audio streaming
In the current Audio Services (VAS) API, only 8KHz

sampling is supported for encoding and playing audio data in
the same session. The raw audio data is originally recorded at
8KHz / 16bits PCM format in the mobile device. As shown in
Figure 1, the real time S2ST system encodes PCM data into
AMR narrow band (AMR-NB) and then transmits to server via
TCP/IP protocol. Once the audio data is received at server end,
it decodes the AMR coded audio into 8KHz/16bits PCM data.
To ensure compatibility with the TTS module and cross lingual
speaker adaptation (which requires the user's speech to adapt
the TTS model) the audio is up-sampled to 16KHz. Following
this, PCM data are fed into the core engine of the speech-to-
speech translation module to translate to another language.
After generating translated and synthesized speech in 16KHz,
an inverse processing is performed and played in the other
mobile client.

Figure 1. Audio data processing flows

III. SERVER OPERATION

The server is functionally divided into two separate parts:
the core engine of the S2ST system and the peripheral control
module. The peripheral control module has several functions of
control, audio transmission, and audio reception corresponding
to the client. The core engine of the S2ST system is the kernel
and the most important part of the system. It can process the
given voices in the pipeline through the ASR, MT, TTS
modules. In order to make synthetic voice sound like the input
user's voice, we adopt an adaptation module that can extract a
user's individual voice characteristics when handling audio data
in the ASR module and then apply this to the TTS module to
produce personalized voice characteristics.

A. Core engine of speech-to-speech translation
The core engine of S2ST system in the server end is

basically composed of ASR, MT and TTS modules. For real
time purposes, we have performed some improvements to
algorithms and scripts. Firstly, we carry out the training of
speaker adaptation in speech recognition and cross-lingual

speaker adaptation as an off-line process. This is necessary as
speaker adaptation is one of the more computation expensive
operations. Secondly, we revise the ASR engine “Juicer”
decoder [3], which is initialized during the server start-up and
then waits for speech input. This way, we can avoid having to
repeatedly load models. The same process is taken to speed up
the TTS engine.

1) ASR module
The ASR module incorporates steps for the generation of

component weighted finite state transducers (WFSTs),
composition and optimization with the AT\&T FST toolkit to
build the Juicer decoder.

To speed up the real-time S2ST system, the Juicer decoder
is modified into three parts, including initialization, decoding
and release. In the current version of the real time S2ST
system, two instances of the ASR engine are started during the
server start-up. These instances use speaker independent
models from the language pairs. When user login, new Juicer
instances are started with these models if speaker adapted
models exist for the specific user, otherwise the pre-initialized
speaker independent instances are used according to the user’s
predefined input language.

Single pass decoding is performed in ASR module due to
online requirement, whereas multi-pass decoding is used to do
unsupervised speaker adaptation in off-line to generate speaker
dependent ASR acoustic models. In real time S2ST system, we
put the speaker adaptation part off-line and directly use the
adapted models or speaker independent models for decoding.

a) AMR codec and up-sampling experiments
We have used 16KHz speech data for ASR and TTS

experiments. In order to achieve good quality of synthesized
speech, 16KHz sampling is regarded as a reasonable choice in
HTS generation. In the current VAS, only 8KHz sampling is,
however, supported for encoding and playback of audio data in
the same session. Therefore, to enable operation of the TTS
module and cross-lingual speaker adaptation which requires the
user's speech to adapt HTS model, we carry out up-sampling of
8KHz audio data from the mobile device to 16KHz. The
preliminary experiments have been conducted to assess the
impact of AMR codec and up-sampling on the ASR module.

For Mandarin Chinese, we train Mel-Frequency Cepstral
Coefficient (MFCC) speaker-independent (SI) and speaker
adaptive (SAT) models for two pass decoder using the
SPEECON database as training set. For testing, the in-house
personal communication (PCOM) database is used For
evaluation. For US English, MFCC SI and SAT models are
trained using the WSJ0 database and evaluated on the
November 1993 CSR 5k hub task.

Table 1 shows the recognition performance for both
Mandarin and English. There, ACC means word accurate rate;
AMR UP means AMR codec and up-sampling. In matched
training and test conditions, about 4%-5% performance
degradation is observed in both first pass and second pass
decoding. The results of mismatched condition experiments, in
which AMR codec and up-sampling MFCC features are tested
on normal MFCC models for Mandarin, less than 15%
recognition accuracy is obtained for both first pass and second

578

pass decoding. It is apparent, given present constraints, we
have to adopt the AMR_UP models for decoding in the real
time S2ST system, but the performance improvement for the
AMR codec and up-sampling speech is expected in the future
research.

Table 1: Experimental results of AMR codec and up-
sampling.

Experiments
conditions

Mandarin(ACC%) English(ACC%)

Models Features First
pass
(SI)

Second
Pass
(SAT)

First
pass
(SI)

Second
pass
(SAT)

Normal Normal 76.4 81.3 89.1 94.0

AMR-
UP

8.0 14.0 N/A N/A

AMR-
UP

AMR-
UP

72.8 75.9 84.3 89.5

2) MT module
For the MT part, we simply take use of Google's AJAX

language API [4].

3) TTS module
In the TTS module, the hts_engine is used and acoustic

feature parameters are generated from the adapted TTS models
using a parameter generation algorithm that considers both the
global variance of a trajectory to be generated and the
trajectory likelihood. An excitation signal is generated by using
mixed excitation of pulse plus band-filtered noise components
with pitch-synchronous overlap and add (PSOLA) algorithm
[5]. This signal is used to excite a mel-logarithmic spectrum
approximation (MLSA) filter corresponding to the STRAIGHT
mel-cepstral coefficients to generate the speech waveform. [6]

To speed up the real time S2ST system, hts_engine is also
modified into three parts including initialization, synthesis and
release. Four general TTS engines are started up by the server,
one for each of combinations of language and gender. While
user enrolling, if the speaker dependent models are available,
they are started and used. Otherwise one specific hts_engine is
used according to user's speaking language and gender.

4) Speaker adaptation module
In the real time S2ST system, two kinds of speaker

adaptation are included. One is speaker adaptation for ASR and
the other is cross-lingual speaker adaptation for TTS. In both
cases, adaptation can be performed in a supervised or
unsupervised manner.

The adaptation for ASR is conducted after a certain number
of voice samples are collected. With the available voice
samples, we can do unsupervised speaker adaptation to
improve adapted models. The adapted models can be initialized
and used to improve the decoding performance. The real time
S2ST system also supports error correction scheme. So it could
provide more accurate utterance text for the input speech, and
supervised speaker adaptation could be applied accordingly.

The adaptation for TTS is conducted in the cross-lingual
speaker adaptation module. A cross-lingual adaptation method
based on a state-level mapping is used [7][8]. This mapping is
derived from the Kullback-Liebler divergence (KLD) between
pairs of model states from the source and target languages.

For supervised adaptation of TTS, TTS models from both
input and output languages are used directly. We can extend
this method to unsupervised adaptation by automatically
transcribing the input data using the ASR module. Then, TTS
models can be adapted directly from the ASR transcription in
the same way as is done for the supervised case. Alternatively,
we may use ASR models that utilize the same acoustic features
as the TTS system. In this case, no other constraints need to
be placed on the ASR. In particular, it is not necessary to use
prosodic context dependent quinphones questions which would
be necessary for TTS models.

In the current version of the real time S2ST system, the
processes of speaker adaptation for ASR and TTS are both off-
line. When the number of input sentences from mobile client
reaches a preset number, the server informs the mobile client
user if s/he is willing to start the adaptation. Once model
adapted, the adapted models can be retained on the server and
can be applied for this user.

B. Peripheral module
The peripheral module is actually supporting parts. It

includes control module and audio process module. As
illustrated in Figure 2, the main functions of the control module
in the server is to manage information about the users, to
maintain sessions between the pairs of clients, and to control
the peripheral and core interaction module. In audio process
module, audio decoding, receiving and sending are processed.
Also, utterance text is processed in this module.

Figure 2: Peripheral control in Server End

C. Streaming and multi-threading support
We provide streaming and file-based ways for the

information transmission between different modules in server
end. Streaming makes it available that the S2ST system
working in a real time way. In the same time, we can choose
property to store the audio and text information in the server

579

end to make off-line ASR and cross lingual speaker adaptation
for TTS doable.

In the same time, we improve the core S2ST system to
support multi-threading. So, the S2ST system can work as a
service to ensure multiple pairs of user to use it in parallel.

IV. USER INTERACTION AT THE CLIENT END

A. User interaction in mobile client
The client software consists of four parts: control module,

audio engine, and the audio send/receive modules. The control
module is in charge of sending and receiving control messages
between the client and server. The audio engine mainly
records, encodes, decodes and plays back audio data. Audio
transmit and receive modules are used for sending and
receiving audio data. In order to avoid conflicts, we use
different socket ports for each module such as control, audio
send and receive, with each module being run separately.

In the client end, some interactions associated with speaker
adaptation are provided. Mobile user is asked if s/he wants to
save his/her voices in the server for the speaker adaptation and
if s/he wants to use his/her voices for speaker adaptation when
sufficient voice data is collected.

Additionally, the mobile user can correct the recognized
utterance text and update it to the server, thus providing
functionality for supervised speaker adaptation in the ASR, as
well as a means to improve the system performance and user
experience.

B. User interface design in mobile client
The user interface is shown in Figure 3, in which the texts

that the server recognized and translated are shown in the
mobile display. The user can edit their recognized utterance
then resend the corrected text to the server. When receiving
messages from their “buddy”, the user will receive the
utterance text along with the synthesized speech.

Figure 3: User Interface in Mobile Client

V. CONCLUSION AND FUTURE WORK

In this paper, we have developed the real time S2ST system
that can easily and flexibly integrate components to implement
speech-to-speech translation from end-to-end in mobile
devices. The real time S2ST system is designed using a client-
server architecture. On the client end, we implement the
application for the NOKIA device from which mobile users
can record input speech and play translated speech in the same
session. The users can also edit the recognized utterance text to
improve the quality of the machine translation. In the server,
the application is implemented to manage communication
between clients and to execute the core engine of the speech-
to-speech translation. In the real time S2ST system, speaker
adaptation for ASR and cross-lingual speaker adaption for TTS
are implemented in off-line mode due to computational
constraints as well as the necessity of collecting multiple
utterances before adaptation can be performed. In its present
state, the real time S2ST system can run in real time.

Concerning future work, first of all, cross-lingual speech
adaptation shall be improved in further research so that the
translated synthesized voices are of higher quality and better
resembles that of the original speaker. And online adaptation
will be integrated into the real time S2ST system while the
rapid adaptation algorithms are available.

Secondly, ASR performance requires further attention,
since the AMR-codec and up-sampling of input voices have
degraded the performance compared the normal 16KHz speech
data. Likewise, the TTS quality is degraded by the lower
bandwidth of the adaptation speech.

Thirdly, we will continue to optimize the real time S2ST
system in terms of complexity and memory. It is also possible
to have entire S2ST in one mobile device stand alone, so that
server is not necessary.

VI. REFERENCES

[1] B Zhou, Y Gao, J Sorensen, et al. , “A hand held speech to speech
translation system”, Automatic Speech Recognition and Understanding,
2003.

[2] T Shimizu, Y Ashikari, et al., “Developing client-server speech
translation platform”, Proceedings of the 7th International Conference
on Mobile Data Management, 2006.

[3] http://code.google.com/intl/ja/apis/ajaxlanguage/
[4] http://juicer.amiproject.org/juicer/
[5] E. Moulines and F. Charpentier. Pitch-synchronous waveform

processing techniques for text-to-speech synthesis using diphones.
Speech Communication, 9(5-6):453–468, 1990.

[6] H. Kawahara, I. Masuda-Katsuse, and A. Cheveign´e. Restructuring
speech representations using a pitch-adaptive time-frequency smoothing
and an instantaneous-frequency-based F0 extraction: possible role of a
repetitive structure in sounds. Speech Communication, 27:187–207,
1999.

[7] Y-J. Wu, Y. Nankaku, K. Tokuda, “State Mapping Based Method for
Cross-Lingual Speaker Adaptation in HMM-Based Speech Synthesis,”
Interspeech 2009, pp.528-531, Brighton, U.K., 6-10 September, 2009

[8] K. Oura, J. Yamagishi, K. Tokuda, S. King and M. Wester
“Unsupervised English-to-Japanese speaker adaptationfor HMM-based
speech synthesis.” ICASSP 2010, pp. 4954-4957 Dallas, USA, 14-19,
Mar,2010

580

